首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17851篇
  免费   1882篇
  国内免费   2420篇
  2024年   11篇
  2023年   410篇
  2022年   391篇
  2021年   604篇
  2020年   725篇
  2019年   860篇
  2018年   714篇
  2017年   851篇
  2016年   802篇
  2015年   779篇
  2014年   975篇
  2013年   1440篇
  2012年   791篇
  2011年   991篇
  2010年   823篇
  2009年   1052篇
  2008年   1142篇
  2007年   1054篇
  2006年   955篇
  2005年   770篇
  2004年   712篇
  2003年   621篇
  2002年   503篇
  2001年   455篇
  2000年   452篇
  1999年   390篇
  1998年   289篇
  1997年   264篇
  1996年   231篇
  1995年   226篇
  1994年   219篇
  1993年   188篇
  1992年   174篇
  1991年   172篇
  1990年   138篇
  1989年   118篇
  1988年   98篇
  1987年   98篇
  1986年   106篇
  1985年   66篇
  1984年   78篇
  1983年   63篇
  1982年   95篇
  1981年   52篇
  1980年   65篇
  1979年   37篇
  1978年   35篇
  1977年   15篇
  1976年   14篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The flesh fly Sarcophaga similis show a clear photoperiodic response; they develop into adults under long days, whereas they arrest their development at the pupal stage under short days. Although the involvement of a circadian clock in photoperiodic time measurement is suggested in this species, the anatomical location of the clock neurons responsible for the time measurement has been unknown. We detected two PERIOD-immunoreactive cell clusters in the larval brain; one cluster was located at the dorsoanterior region and the other at the medial region. We further investigated their temporal changes in PERIOD-immunoreactivity and compared their patterns under different photoperiods.  相似文献   
42.
43.
Many studies have investigated the effect of different parameters of the endodontically restored tooth on its final strength, using in vitro tests and model simulations. However, the differences in the experimental set-up or modelling conditions and the limited number of parameters studied in each case prevent us from obtaining clear conclusions about the relative importance of each parameter. In this study, a validated 3D biomechanical model of the restored tooth was used for an exhaustive sensitivity analysis. The individual influence of 20 different parameters on the mechanical performance of an endodontic restoration with prefabricated posts was studied. The results bring up the remarkable importance of the loading angle on the final restoration strength. Flexural loads are more critical than compressive or tensile loads. Young's modulus of the post and its length and diameter are the most influential parameters for strength, whereas other parameters such as ferrule geometry or core and crown characteristics are less significant.  相似文献   
44.
45.
Aim To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study. Location The Alps. Methods We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host‐plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice‐based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions Species‐specific interactions are scarce in alpine habitats because glacial cycles have limited the opportunities for co‐evolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at a large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host dependence of the beetle, which locally limits the establishment of dispersing insects.  相似文献   
46.
Sinks and sources of methylmercury in a boreal catchment   总被引:1,自引:1,他引:0  
A simple, catchment-scale, cascade model was used toassess the importance of sinks and sources ofmethylmercury (MeHg) in a boreal catchment thatcontains a forested upland, a lowland peatland and asmall lake. The three compartment model was run usingrealistic flow rates and atmospheric loading of MeHg,and the model was constrained by observedconcentrations of MeHg in each compartment. Assumingno internal sinks and sources of MeHg, modelledcatchment yields showed reasonable agreement withfield observation, but the predicted internal MeHgconcentrations in each compartment were implausible. Only when sources and sinks of MeHg are added to thethree compartments do MeHg-pool concentrations fallinto the range of those measured in the field. Tomaintain both catchment-scale and compartment-scalecontinuity, the upland and peatland were net sourcesof MeHg (0.0007 and 0.1065 mg ha-1 d-1respectively), and the lake a net sink (-0.2215 mgha-1 d-1). These source/sink rates are 1.73,259 and -539 times the input of MeHg via wetprecipitation input for the modelled ice-free season. Sensitivity analysis revealed that the volume ofrunoff delivered to the peatland by the upland area,peatland size and porewater MeHg concentration in thepeatland are important controls on catchment MeHgyield, and that contemporary atmospheric deposition ofMeHg is insignificant compared to the sources of MeHgwithin the catchment.  相似文献   
47.
In order to help design experiments with minirhizotrons or interpret data from such experiments, a modelling approach is a valuable tool to complement empirical approaches. The general principle of this modelling approach is to calculate and to study the part of a theoretical root system that is intersected by passes through a virtual minirhizotron tube (modelled here as a cylinder). Various outputs can be calculated from this part of the root system, and related to the surrounding root system which is perfectly known, since it has been simulated and stored in a data structure. Therefore, the method involves two levels of modelling that are presented and discussed: the root system architecture of a crop, and the observations that can be achieved with minirhizotron tubes. Illustrations of the method are presented to study the effect of several factors on the rooting depth curves, and to show how images may be calculated to mimic what can actually be viewed from inside the tube. These first results show that the maximum rooting depth curves, as virtually observed in the minirhizotron tube, present large variations and strongly underestimate the maximum rooting depth of the modelled root system (up to 60 cm in average). The underestimation is still more critical when the radius of the tube is lower than 3 cm, and when the tube is close to the vertical (angle lower than 0.2 rad). The use of the 0.9 quantile instead of the average value, for each of the observation dates, leads to a better estimation of the maximum rooting depth.  相似文献   
48.
49.
50.
Aim Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location California, USA. Methods We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号